Tag Archives: Climate Change

What the GBRMPA chair DID NOT say about my coral bleaching article

In April 2016 I submitted an article to The Marine Professional – a publication of the Institute of Marine Engineering, Science & Technology (IMarEST) focusing on the mass bleaching event that had hit the Great Barrier Reef at the time.  In their September 2016 issue, The Marine Professional featured a comment from a reader, in which he stated that he shared the article with Dr. Russell Reichelt – chair of the Great Barrier Reef Marine Park Authority.  The reader alleged that  Dr Reichlet told him that the article “contains some accurate things mixed with half truths and alarmism”.

A number of  coral reef, marine biology, and climate scientists have been in touch to express their concern about Dr Reichelt’s alleged comments on my article.  After liaising with Dr Reichelt’s office*, I am pleased to be able to set the record straight on what he did – or rather did not say.

*I did contact Dr Reichelt directly, but he replied via his office not directly.

After corresponding with Dr Reichelt’s office to determine where the “half truths and alarmism” were in the article, I have been informed that, whilst Dr Reichelt recalls the article being brought to his attention, he never made any such comments about the article.  In fact, he hadn’t even seen the article to comment on in the first place.  He has since read the piece and agrees that it is factual.

I have not attempted to contact the reader to find outwhere his comment came from.

Below is a copy of the article I submitted to The Marine Professional.   For those who want to see the article after it has been through their editorial process, please see the June 2016 edition of The Marine Professional.

Continue reading What the GBRMPA chair DID NOT say about my coral bleaching article

Where the wild things roam: Dispersal, connectivity, marine protected areas, and my PhD project

 

In my last post I mentioned that I am starting a PhD.  I promised to tell you a little more about what my research will be looking at, so here we go!

The project outline

My research comes very broadly defined already – the work’s raison d’être if you like.  Here it is:

“Movement and dispersal connects marine populations, allowing restoration of depleted local populations by immigrants that renew genetic diversity. Although Canada’s Oceans Act prioritizes ‘linking Canada’s network of marine protected areas (MPA)’, connectivity has not weighed significantly in MPA network design in Canada. This study will optimize regional marine connectivity among protected areas in the Atlantic region by determining optimal locations for new MPAs and evaluating how commercially important species would be representative in the entire MPA network. To model species distribution based on larval dispersal, fishery pressure, and climate change, we will use 3-D ocean circulation models. Then, based on metapopulation theory, we will develop novel spatial network algorithms to optimise the number and spatial connectivity between MPAs under current and future scenarios of climate and fishery pressure that may alter larval supply”.

Sounds complex?  Yep, for me too. Continue reading Where the wild things roam: Dispersal, connectivity, marine protected areas, and my PhD project

A brighter future for the shy albatross

Predicting the future is a tricky business.  As then United States Secretary of Defence Donald Rumsfeld famously said “There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. There are things we don’t know we don’t know” .  Then there is the interactions between all the variables that determine the outcome of a particular event.  However, few things work in isolation and species decline often results from the accumulation of different stressors.  If we want to put in place conservation management measures that are effective in the long term, then we need to be able to put our known (and measurable) stressors together and figure out what, cumulatively they mean for our potentially at risk species.

The shy albatross (Thalassarche cauta) is an endemic to Australia, breeding on just three Tasmanian islands, including the aptly named Albatross Island.  The albatross of Albatross Island have a long history of human interest.  In the early 19th century adult albatross were extensively hunted for their feathers and egg, taking their numbers down from an estimated 11,100 pairs to just 400.  The population is now recovering, but still faces a number of possible threats.  High on this list are two issues – changing climatic conditions, and the accidental capture of the albatross in longline and trawl fisheries.  To understand just what the combined impact of these stressors could mean for this vulnerable bird, Robin Thomson and colleagues from CSIRO Marine and Atmospheric Research​​​, together with the Tasmanian Government Department of Primary Industries, Parks, Water and the Environment (DPIPWE) put together a model that can hopefully direct management to ensure these birds survive in the long term.

Continue reading A brighter future for the shy albatross

Climate Change Impacts on Kenya’s Fishery-dependent communities

 We now have a number of scientific studies that tell us how climate change is altering coral reef ecosystems, but how will these changes impact on communities that depend on them for their livelihood?  According to Joshua Cinner of James Cook University in Australia and colleagues from around the world, that answer depends more on the  community capacity for adaptation than its location.

Fishery-dependent communities in Kenya are not in a great situation.  Their reefs were heavily affected by a massive bleaching event in 1998 that has been linked to an extreme El Niño event and have not necessarily recovered as well as we might hope, and Kenyan reefs are likely to face increasing amounts of climate-related stress into the future.  Across three years, Cinner and co surveyed 15 ecological sites associated with 10 coastal communities along the Kenyan coast.  Using a range of ecological indicators of vulnerability of these reefs, they linked up the ‘health’ of the ecosystems with the vulnerability of the human communities that depend on them. Continue reading Climate Change Impacts on Kenya’s Fishery-dependent communities

With ever-warming waters, some European fish are on the move

We all have our favourite types of environment and weather.  Some love those warm, sunny days spent on a beach of golden sands.  Some love those rainy days in the forest, when everything glistens with the raindrops.  Some love nothing more than a cold crisp day in snowy mountains.  We humans are lucky.  We can not only survive but enjoy a wealth of different environmental conditions.  Many other species are not so adaptive.  In the oceans some creatures live in the seabed itself, others on top.  Some may stay in the water column dominated by a particular type of habitat like a kelp forest, whilst others roam into a variety of different locations throughout their lives.  Then there are the varying conditions of the ocean itself.  Some areas are generally calm whilst others may experience a lot of movement.  Salinity levels also vary, as does oxygen, as does temperature.  Actually temperature – as many a fisher will know – is a super important driver of species distribution.  There are a few reasons for this.  First, unlike us, most fish do not have the ability to control their own body temperature.  Their internal body temperature reflects that of the environment they are in.  The second primary reason relates to food.  If the major food of a fish – be it plant (phytoplankton) or animal – changes its abundance (how many) or its distribution (where it is), then the fish may follow. Continue reading With ever-warming waters, some European fish are on the move

Marine conservation and the human equation

People are as much a part of this planet as any other species.  We are ecosystem engineers, modifying and creating new environments to suit our needs.  We are incredibly adaptable, and our ability to make tools – both simple and technologically complex – has allowed us to prosper and rise above many of the restrictions that limit other species.  This doesn’t mean we can now act completely in isolation from the rest of the world.  Many of our activities have altered ecosystems in ways that mean they are less likely to meet our current and future needs.  Conservation efforts are attempting to remedy many of the problems we have created, but conservation isn’t just about nature – it’s about people too.

Nathan Bennett has been actively researching the links between the environment and human societies for many years.  His work takes a perspective that historically has often been forgotten in conservation management; what about humans.  This isn’t about developing opportunities of industry – it’s about conservation initiatives that look to sustain environment and communities together.  This week he has shared three of his papers on his blog – one from 2013 and two from this year.  Thanks to Nathan, all three are now open access…all three very much worth a read.  Here’s a brief overview of each paper to whet your appetite.

The trouble with marine protected areas
So here’s the deal.  We can find an area of the ocean that is becoming heavily degraded because of human activities.  To try to reduce the damage and allow recovery we can place a boundary around that area and place restrictions on the sorts of activities that take place inside.  But what of those people whose activities have been displaced?  We aren’t just talking about recreational fishers here.  In some circumstances, communities which are heavily dependent on the marine environment can be affected.  In this paper, Nathan and his colleague Phil Dearden surveyed coastal resource dependent communities living on the Andaman Coast of Thailand – an area which boasts 17 National Marine Parks.  The perspective of these people makes for grim reading.  They saw little benefit in the parks for their community, they felt that fishing and harvesting was negatively impacted by the parks, and they felt little incentive to support let alone participate in conservation efforts.  What needs to happen, writes Nathan and Phil, is for managers to start including socio-economic development considerations within protected area management planning.  This won’t just be better for the communities, but better for marine conservation.

It’s not just about how vulnerable you are, it’s what you can do to adapt
We’re back to the Andaman Coast of Thailand again, this time to consider their vulnerability and ability to adapt to climate change.  There are a whole host of different factors that can affect a community’s ability to adapt to climate change – and indeed any other sort of stressor.  Some of these are biophysical – climate change related impacts such as coral bleaching, or increasing number of storms, as well as environmental impacts such as marine pollution and overfishing.  Some of the factors are economic – like increasing costs of fuel, social – like increasing immigration, and some are related to governance, like corruption, policies, or illegal fishing.  Nathan and the team wanted to find out how communities felt about stressors.  They surveyed 237 households across 7 coastal communities to ascertain which of the 36 stressors identified in the region were considered having highest impact on the communities.  The results were a bit of a mixed bag, and despite the communities being just 10 km apart, differed between each community.  There were a few common factors though.  Many of the stressors were heavily intertwined.  Climate change impacts like more extreme storms and changes to rainfall were rated highly in the stress-rankings.  Economic factors – particularly rising costs – also came out as a major concern among all the communities.  Interestingly somewhat in contrast to the study above, marine protected areas were not really felt to be causing too much trouble.  What about overfishing?  Not a concern either… but then again the fish populations declined long ago, so overfishing isn’t really an immediate concern any more.  The thing about these sorts of stressors is that they aren’t really something that the community can deal with themselves.  They are part of wider regional and global problems.  From an adaptation perspective, this raises a number of issues.  There is not a ‘one adaptation plan to fit all’, but there are common factors that need to be looked at beyond the communities themselves.  Equally important, if we want to help communities to adapt, we cannot treat one stressor as separate from another.  A more integrated approach is vital for the success of any adaptation plan.

The eco-social economy:  How conservation can aid social and economic development
In this final paper the focus is turned to the Northwest Territories Canada and the Lutsel K’e Dene First Nation.  There have been plans afoot for their traditional territory…plans for a national park/protected area.  This is an old idea, and one that back in 1969 when the Government of Canada (Federal Government) tried to implement met with the opposition of the local people, who were successful in preventing the creation of a park.  In 2006, the First Nation and the Government of Canada signed a Memorandum of Understanding to look at implementing a park on those very same territories.  So what happened?  This new proposal has come from the local people themselves – a bottom up rather than top-down approach to conservation.  Through this collaborative process the park is taking an eco-social perspective to conservation.  Here, people aren’t just seen as the cause of degradation, but are seen as part of the ecosystem, impacted by the degradation.  The national park is not yet set up but is moving forward.  When it is, it is hoped that the park won’t just protect nature and the Lutsel K’e Dene First Nation culture, but work to meet social and economic development goals.

If you want to follow more of Nathan’s work head over to his blog http://nathanbennett.ca.  There is a follow option which will automatically update you of any new posts.  Now there’s some emails worth getting.

Image:  The Lutsel K’e Dene on  Great Slave Lake, Northwest Territories, Canada.  Credit:  Leslie Philipp/Flickr (CC BY 2.0)

News from the life aquatic

There are three great open access papers out this week that I want to share. Three! But which to share? Well why not all three. Here’s a quick round-up of some of the latest research in ocean science. Best served with a nice slice of your favourite treat.

Can you tell what (species) it is yet?
Every time we explore life in the deep sea we find more and more creatures that bioluminensce. Around 80% of all eukaryotic life in waters below 200 meters are thought to have this ability. In this study by Matthew Davis of The University of Kansas (USA) and fellow researchers, it emerges that diversity of species (species richness) in deep sea fish groups may be influenced by photophores – light emitting cells on the body of fish. The researchers work found that some lineages of the lanternfishes (Myctophidae) – which are made up of over 250 species – have photophores with species-specific patterns. This means species can clearly be identified from one another. This diversification seems to have happened after the evolution of the lanternfishes photophores some 73 – 104 million years ago. As diversification of photophores occurred, so too did speciation.  http://dx.doi/10.1007/s00227-014-2406-x

 

Where the young turtles swim
We watch baby turtles hatch and make their way into the open ocean. We watch them when they show up in coastal waters years later as ‘teenagers;. But where do they go when they are growing up? That is what Kate Mansfield of the University of Central Florida and fellow researchers set about to discover for loggerhead turtles (Caretta caretta) . 17 young turtles – all between 3.5 and 9 months old and reaching a maximum length of just 18 cm were tagged with small solar-powered satellite transmitters. And what an adventure these guys had. Staying mostly at the surface, these critters were found enjoying a wide area of the ocean past the continental shelf, – with one turtle travelling up to 2,672 miles! What was particularly surprising for the researchers was that they didn’t just hang out in gyre-associated currents – sometimes they went off exploring
http://dx.doi10.1098/rspb.2013.3039

 

I’m sure there used to be people living there
With changing climate comes changing sea levels. And for many areas that means a sea level rise. In this study by Ben Marzeion from the University of Innsbruck (Austria) and Anders Levermann from Potsdam University (Germany), looked at all 720 UNESCO World Heritage Sites to see what increasing sea levels would mean for them. The researchers decided to take a not-too unrealistic prediction of 3 degrees Celsius above pre-industrial levels in the next 2000 years. Under this scenario, their models indicated that 136 sites (19%) would be impacted by sea level rise. Doesn’t sound too bad, on the grand scheme of things but those sites do include key heritage areas like the Sydney Opera House, the Tower of London, and Independence Hall. Check out some visualisations from The Weather Channel, created using ‘Drown your Town’. But the researchers didn’t stop there. They also looked at how much of the current human population would be impacted by sea level rise. The same scenario indicated that 7% of the world’s population is living on land that will be undersea within 2000 years. Around 60% of those affected live in just 5 countries – China, India, Bangladesh, Vietnam, and Indonesia. Sobering thoughts for the future.  http://dx.doi:10.1088/1748-9326/9/3/034001

 

Image: ‘Drown your Town’ used on Cape Town, South Africa (50m rise – possibly a little extreme!). Credit: Drown your Town

In the face of changing coral reefs, how will dependent communities react?

We now have a number of scientific studies that tell us how climate change is altering coral reef ecosystems, but how will these changes impact on communities that depend on them for their livelihood?  According to Joshua Cinner of James Cook University in Australia and colleagues from around the world, that answer depends more on the  community capacity for adaptation than its location.

Fishery-dependent communities in Kenya are not in a great situation.  Their reefs were heavily impacted by a massive bleaching event in 1998 that has been linked to an extreme El Nino event and have not necessarily recovered as well as we might hope, and Kenyan reefs are likely to face increasing amounts of climate-related stress into the future.  Across three years, Cinner and co surveyed 15 ecological sites associated with 10 coastal communities along the Kenyan coast.  Using a range of ecological indicators of vulnerability of these reefs, they linked up the ‘health’ of the ecosystems with the vulnerability of the human communities that depend on them.

The authors found only a marginal difference in the vulnerability of reefs that were heavily fished, under community co-managed fisheries closures, or no-take National Marine Parks, with heavily fished reefs looking like they may be most vulnerable.  How this impacted on their associated human-communities varied considerably, with some communities faring better than others.  Some of this variability depended on the type of species fishers were targeting, with fishers using traps and beach seine nets are expected to see a decline in their catch.  But we are an adaptable species, and some coral creatures – particularly herbivorous fish – may increase in abundance as a response to changes in the reef*.

But not every community is able to adapt to the changing conditions well.  There are a whole host of reasons why a community may not be able to adapt.  For the fishers themselves, switching gear to catch a different species isn’t necessarily that easy.  Fishing equipment isn’t cheap, and these guys aren’t exactly rolling in it.  Then we have whole communities that are almost solely dependent on reef fisheries.  For these guys, their adaptive capacity is even more limited, because there simply isn’t the option to switch to another source of livelihood.  In essence, communities that are more ‘generalist’ are better able to adapt to changing conditions than those which are ‘specialist’.

So where does this leave the Kenyan communities when having to deal with the changing conditions they are facing?  The authors maintain that “adaptive capacity is perhaps the component of vulnerability most amenable to influence, and may be a useful focus for adaptation planning”.  This is a good point.  We can’t necessarily halt the degradation that reefs have been experiencing on a time-scale that is meaningful to these communities, but we can work towards supporting communities increase their capacity to adapt to change.

Lumping ‘poor communities’ together when thinking about climate change impacts doesn’t really cut it – even within the same geographic area there is considerable variation with regards to the impacts of climate change and more importantly how those communities can respond to that change.

The paper is published in the open access journal PLoS ONE

Image: Small-scale fishers on the coral reef surrounding Siquijor island, Philippines.  Credit Rebecca Weeks/Marine Photobank

* Herbivorous fish may increase because algae often grow over dead coral.  So, as reefs become degraded and the coral dies off, there will be more food for herbivorous fish and we may very well see a shift in the state of the ecosystem in those areas.  Nothing is certain though, and we will have to wait to see how that scenario actually plays out.

Warming waters means many marine species are on the move

Whoa there little fella where do you think your trying to hitch a ride off to?

Actually, he’s not the only one on the move.  Elvira Poloczanska from CSIRO, and plethora of colleagues around the globe have been very busy bees over the past 3 years, assembling a database of a whopping 1,735 recorded changes in marine biological responses (distribution, phenology, community composition, abundance, demography, and calcification).  These changes come from a whole range of species from around the globe.  How far back data went varied, timespan averaged at around 40 years (so back to the 1970s.  I believe this is roughly around/just after Scuba diving started to become more main-stream).  So what did they find?  Well, out of all the changes, 81–83% of them were consistent with climate change.  Here’s two of the ‘headline’ changes that came out of this study… Continue reading Warming waters means many marine species are on the move

Pacific Islanders to face climate change challenges

Ahh the Pacific Islands…white sand, warm water, sun shining down….it sounds wonderful (especially for me – I’m having a ‘year of winter’ with my moving about).

But things are changing, and perhaps nothing is quite changing on a global scale quite like the climate.  If your a Pacific Islander, climate change is likely to be a huge problem.  It all comes down to reliance on local resources, and in many cases these resources come from local marine waters.  From a food perspective, Dr Johann Bell of the Secretariat of the Pacific Community and colleagues from around the globe predict things are going to change a fair bit….here’s some highlights from the paper: Continue reading Pacific Islanders to face climate change challenges